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SUMMARY

Using data from 145 007 adults in the Disability Supplement to the National Health Interview Survey,
we investigated the effect of balance difficulties on frequent depression after controlling for age, gender,
race, and other baseline health status information. There were two major complications:(i ) 80%
of subjects were missing data on depression and the missing-data mechanism was likely related to
depression, and(i i ) the data arose from a complex sample survey. To adjust for(i ) we investigated three
classes of models: missingness in depression, missingness in depression and balance, and missingness in
depression with an auxiliary variable. To adjust for(i i ) we developed the first linearization variance
formula for nonignorable missing-data models. Our sensitivity analysis was based on fitting a range
of ignorable missing-data models along with nonignorable missing-data models that added one or two
parameters. All nonignorable missing-data models that we considered fit the data substantially better than
their ignorable missing-data counterparts. Under an ignorable missing-data mechanism, the odds ratio for
the association between balance and depression was 2.0 with a 95% CI of(1.8, 2.2). Under 29 of the 30
selected nonignorable missing-data models, the odds ratios ranged from 2.7 with 95% CI of(2.3, 3.1) to
4.2 with 95% CI of(3.9, 4.6). Under one nonignorable missing-data model, the odds ratio was 7.4 with
95% CI of(6.3, 8.6). This is the first analysis to find a strong association between balance difficulties and
frequent depression.
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1. INTRODUCTION

The ability to maintain balance is essential to nearly all activities of daily living. People with
chronic balance disorders are significantly disabled in many day-to-day functions, particularly those
that require stabilizing the body during weight-shifting, bending, or rapid head motion. Unfortunately,
balance problems are widespread and have serious consequences. The National Institute on Deafness
and Other Communication Disorders (NIDCD) estimates that 12.5 million Americans over the age of 65
have dizziness or balance problems that significantly interfere with their lives (NIDCD, 1995). Because
balance is normally an unconscious process, patients often have difficulty articulating their symptoms,
and physicians can have difficulty identifying the problem and determining its cause. Consequently, little
is known about the association of balance problems with other health outcomes.

One of our major interests was whether or not balance problems are associated with frequent medically
treated depression. For public health reasons, our emphasis is on depression that requires medical
treatment. It is thought that chronic balance/dizziness problems and psychological outcomes are related
because both imbalance/dizziness and negative affectivity (a psychological trait with high levels of anxiety
and depression) can arise from a common neurophysiological mechanism Hudson and Pope (1994).
Recent population-based surveys (Grimby and Rosenhall, 1995; Honrubiaet al., 1996; Yardleyet al.,
1998) found that dizzy subjects reported more depressive symptoms than non-dizzy subjects. However,
Tinetti et al. (2000) found only ‘marginal significance’(P = 0.085) and Nazarethet al. (1999) excluded
anxiety as nonsignificant in a stepwise logistic regression for factors associated with dizziness. Moreover,
these conclusions can only be regarded as tentative because of the specialized nature of the populations
associated with these studies.

To further investigate the relationship between balance impairment/dizziness and frequent depression,
we analysed data from the Disability Supplement to the National Health Interview Survey (NHIS-D),
the first multipurpose and nationally representative disability survey conducted in the United States.
The objective of the survey was to investigate the prevalence and impact of disability in the US non-
institutionalized civilian population. In 1994 and 1995, the core questionnaire probing demographic
characteristics and general health information was administered to all members of the sampled household.

In addition, the Phase 1 Disability Questionnaire collected basic data on disability. One of the Phase
1 questionnaire topics was sensory impairments, which included questions on chronic imbalance and
dizziness. Because both chronic imbalance/dizziness and depression are not prevalent among children,
our analysis was restricted to the 145 007 adults (age 18 years or older) surveyed in NHIS-D. Information
on chronic imbalance/dizziness, defined as balance or dizziness problems lasting for at least 3 months, was
collected in Phase 1 and was available from 141 960 adults (with 3047 or 2.1% missing due to refusals or
don’t knows).

In a somewhat nonstandard design, inclusion in Phase 2 was based on responses to a large series
of Phase 1 questions related to disability. These include sensory limitations (e.g. trouble seeing, trouble
hearing), dizziness, balance limitations, physical limitations (e.g. uses walker, uses cane), trouble with
mental functions (e.g. frequently depressed or anxious, paranoia), selected disability conditions (e.g.
cerebral palsy, autism), services (e.g. physical therapy, occupational therapy), and perceived disability.
Only the 29 019 adult Phase 1 participants who answered ‘yes’ to at least one of these questions were
included in Phase 2 (Table 1). Importantly, inclusion in Phase 2 did not depend on the sampling of the
investigators as would have occurred if investigators randomly selected with nonzero probabilities some
subjects who answered ‘yes’ to at least one question and some subjects who answered ‘no’ to all the
questions. Subsequently, adult participants in Phase 2 were asked if they experienced frequent depression
with medical treatment and 25 614 provided answers. Thus the total fraction of adults who provided a
response to the Phase 2 question on frequent medically treated depression was 25 614/145 007= 18%.
The major goal of our analysis was to estimate the association between balance/dizziness and frequent
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Table 1.Data on depression and balance

Answered yes Included in Phase 2 Not included in Phase 2
to at least one not missing (R = 0) missing (R = 1)

Phase 1 balance Y = 0 Y = 1 Y = 0 Y = 1
question problem no yes no yes total
yes(Z = 0) no (X = 0) 17 677 4685 0 0

yes(X = 1) 1768 984 0 0
no (Z = 1) no (X = 0) 0 0 ? ? 115 651

yes(X = 1) 0 0 ? ? 1195
The zeros are structural.

medically-treated depression with a sensitivity analysis to investigate the effects of the missing-data
mechanism and an adjustment for the variance to account for the complex survey design.

2. LIKELIHOOD FORMULATIONS

To fix ideas, we derive the likelihood for a simple example with only one covariate, balance.
Extensions to more covariates are straightforward. LetX = 1 if a subject had balance problems and 0
otherwise. LetZ = 1 if the subject were included in Phase 2 by answering ‘yes’ to one of the appropriate
questions, and 0 otherwise. LetY = 1 if medically treated depression on Phase 2 and 0 otherwise Let
R = 1 if missing medically treated depression on Phase 2 and 0 otherwise.

Missing only depression

Suppose we could observenzxy, the number of subjects with variablez for inclusion in Phase 2, balance
at levelx, and depression outcomey. Also suppose we could observewzx, the number of subjects missing
data on depression with variablesz for inclusion and balance level atx Let pr(R = 1 | z, x; ζ ) denote
missing-data model and let pr(y | z, x; π) denote the model of interest. The likelihood kernel is

L0 =
∏

x

∏
y

∏
z

[pr(R = 0 | z, x; ζ ) pr(y | z, x; π)]nzxy

∏
x

∏
z

[�y pr(R = 1 | z, x; ζ ) pr(y | z, x; π)]wzx (1)

Because pr(R = r | Z = z, x; ζ ) factors from the likelihood andζ is distinct fromπ (i.e. no parameter
in ζ is a function of any parameter inπ , or vice versa), the missing-data mechanism is ignorable (Rubin,
1974, 1976). It would therefore appear that one could adequately base inference aboutπ on �x�y�z

pr(y | z, x; π)]nzxy. However, due to the special nature ofz, such inference is problematic. The problem
arises becausen1xy = w0x = 0, so (1) reduces to

L1 =
∏

x

∏
y

[pr(R = 0 | Z = 0, x; ζ ) pr(y | Z = 0, x; π)]n0xy

∏
x

[�y pr(R = 1 | Z = 1, x; ζ ) pr(y | Z = 1, x; π)]w1x . (2)

From (2), the part of the likelihood involvingπ is L∗
1 = �x�y[pr(y | Z = 0, x; π)]n0xy, which only

corresponds to subjects in Phase 2. BecauseZ = 0 in L∗
1 not all parameters can be estimated. For purposes

of illustration, it is helpful to consider a particular model, logit(pr(y | z, x; π)) = π0 + πXx + πZz +



44 S.G. BAKER ET AL.

πX Zxz, whereπ = (π0, πX, πZ, πX Z). In L∗
1 the model is logit(pr(y | Z = 1, x; π)) = π0 + πXx. Thus

it is not possible to estimateπZ or πX Z. In other words, using the formulation in (2), we can only make
inference about the effect of balance on depression for subjects in Phase 2. The goal is make inference
for all subjects. To circumvent this difficulty we formulated a new likelihood kernel with an ignorable
missing-data mechanism,

L2 =
∏

x

∏
y

[pr(R = 0 | Z = 0, x; τ) pr(Z = 0 | y, x; η) pr(y | x; β)]n1xy

∏
x

[�y pr(R = 1 | Z = 1, x; τ) pr(Z = 1 | y, x; η) pr(y | x; β)]w0x , (3)

whereβ is the parameter of interest that applies to all subjects. We cannot reduce (3) to�x�y[pr(y | x;
β)]n1xy because of the dependence ofZ on y. Because pr(Z = 0 | y, x; η) = pr(R = 0 | y, x; η) and
pr(Z = 1 | y, x; η) = pr(R = 1 | y, x; η) (3) reduces to the likelihood kernel

L3 =
∏

x

∏
y

[pr(R = 0 | y, x; η) pr(y | x; β)]nxy

∏
x

[�y pr(R = 1 | y, x; η) pr(y | x; β)]wx , (4)

wherenxy = n1xy andwx = w0x. If pr(R = r | y, x; η) = pr(R = r | x; η) andη is distinct fromβ, the
missing-data mechanism in (4) is ignorable; otherwise it is nonignorable.

Elashoff and Elashoff (1974); Fay (1986); Baker and Laird (1988) independently developed the first
models to adjust for nonignorable missing-data mechanisms with categorical data. These nonignorable
missing-data models are identifiable when some higher-order interactions are set to zero. For the simple
case of a binary covariate and a binary outcome, as in Table 1, Baker and Laird (1988) derived closed-
form maximum likelihood estimates when missingness depends on the outcome but not on the covariate.
Maximum likelihood estimates are obtained by solving two equations in two parameters, unless the
solution is on the boundary of the parameter space. Using the simple algorithm in Baker and Laird (1988)
we determined that the solution for the data in Table 1 was on the boundary of the parameter space. Using
the closed-form boundary estimates in Baker and Laird (1988) with variance computation via the MP-
transformation (Baker, 1994c), we estimated the logarithm of the odds ratio as 2.8 with an asymptotic
standard error of 0.04. However, the large deviance of 101 on zero degrees of freedom indicated a poor fit
and suggested that additional covariates were needed.

With nonignorable missing-data mechanisms, results from a simple model with one covariate can
change considerably with the addition of more covariates. For a single covariate with an interior solution,
the odds ratio for the effect of covariate on outcome and its standard errors are identical for ignorable and
nonignorable models (Elashoff and Elashoff, 1974; Baker and Laird, 1988; Bakeret al., 1992). With even
one additional covariate, the odds ratios under ignorable and nonignorable missing-data models can differ
even if the probability of missing in the latter model depends on outcome and not also the interaction
between outcome and one of the covariates.

Missing in both depression and balance

Extending (4), we also formulated a likelihood to account for the 2% of subjects missing in balance. Let
S = 1 if a subject was missing in balance and 0 otherwise. Because missingness in depression occurs after
missingness in balance, we allow the probability of missing in depression to depend onS. Let uy denote
the number of subjects with depression outcomey who are missing balance. Letv denote the number of
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subjects missing both balance and depression. The likelihood kernel is

L4 =
∏

x

∏
y

[pr(R = 0 | S = 0, y, x; ψ) pr(S = 0 | y, x, θ) pr(y | x; β) pr(x | α)]nxy

∏
x

[�y pr(R = 1 | S = 0, y, x; ψ) pr(S = 0 | y, x; θ) pr(y | x; β) pr(x | α)]wx

∏
y

[�x pr(R = 0 | S = 1, y, x; ψ) pr(S = 1 | y, x; θ) pr(y | x; β) pr(x | α)]uy

[�x�y pr(R = 0 | S = 1, y, x; ψ) pr(S = 1 | y, x; θ) pr(y | x; β) pr(x | α)]v. (5)

Unlike the case with missing in only one variable, if pr(R = r | s, y, x; ψ) = pr(R = r | x; ψ)

or pr(S = s | x; θ) = pr(S = s | y, x; θ) the missing data mechanism is not ignorable. This is an
example of a type II nonignorable missing-data mechanism, where missingness in a variable does not
depend on that variable but depends on one or more other variables that are partially missing (Baker,
2000). In contrast, a type I nonignorable missing-data mechanism means that missingness in a variable
depends on the partially observed value of the variable and may or may not depend on other partially
observed variables. A type I nonignorable missing-data mechanism represents a conceptually different
type of missing-data mechanism and is the primary focus of our missing-data adjustment.

Missing in depression with an auxiliary variable

Extending (4), we also formulated a likelihood that incorporates an auxiliary variable, which we define
as a completely observed variable that occurs after baseline and is strongly related to the partially
observed outcome variable. The auxiliary variable provides information on the outcome variable when
the outcome variable is not observed. Here the auxiliary variable is a response to a Phase 1 question on
frequent depression or anxiety, which likely has a strong association with the outcome variable: medically
treated depression. In fact, all subjects with medically treated depression in Phase 2 also answered yes to
depression or anxiety in Phase 1. To avoid added computational difficulties, particularly with the sparse
data, we discarded data from the 2% of subjects missing in balance. LetA denote the binary auxiliary
variable. The likelihood kernel is

L5 =
∏

a

∏
x

∏
y

[pr(R = 0 | a, y, x; δ) pr(a | y, x; λ) pr(y | x; β)]naxy

∏
a

∏
x

[�y pr(R = 1 | a, y, x; δ) pr(a | y, x; λ) pr(y | x; β)]wax, (6)

wherenaxy is the number of subjects with auxiliary variable at levela, balance at levelx and observed
depression outcomey; and wax is the number of subjects missing the depression outcome who have
auxiliary variable at levela and balance at levelx. If pr(R = r | a, y, x; δ) = pr(R = r | a, x; δ) andδ is
distinct fromλ andβ; the missing-data mechanism is ignorable, otherwise it is nonignorable. In analysing
data for a missing outcome in a randomized trial, Baker (2000) formulated (6) for an ignorable missing-
data mechanism with binary covariate, auxiliary variable and outcome. The closed-form solution in Baker
(2000) is a simple function of the observed counts and the imputed counts, where the imputation is based
on the covariate and the auxiliary variable. In analysing observational data with a missing covariate,
Horton and Laird (2001) and Ibrahimet al., (2001) also formulated a related likelihood under an ignorable
missing-data mechanism.

The likelihood kernel with an auxiliary variable in (6) can be viewed as a generalization of the
likelihood kernel without an auxiliary variable in (4). We investigated (6) and (4) separately because
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they involved very different missing-data models and, as part of our sensitivity analysis, we wanted to
investigate how the results varied. In theory the likelihood kernel for missing in two variables in (5) could
also be generalized to include an auxiliary variable, but the computations are difficult.

3. MODELS

We used the following general approach to model selection. First we specified separate ignorable
missing-data mechanisms with main effects, two-way interactions and three-way interactions. Second, for
each of these ignorable missing-data mechanisms, we specified a nonignorable missing-data mechanism
by adding an interaction between missingness in outcome and outcome. For further investigation, we
subsequently added an interaction between missingness in outcome, outcome, and balance. The reason
for starting with ignorable missing-data mechanisms in this likelihood-based approach was robustness.
All ignorable missing-data mechanisms give rise to the same estimates and standard errors for parameters
in the model of interest. The rationale for perturbing multiple ignorable missing-data mechanisms was
to investigate the sensitivity of the perturbation to the initial model from the interaction of missingness
in outcome with outcome. The investigation of multiple missing-data mechanisms is a key feature of the
sensitivity analysis.

Missing only in depression

We initially discarded data from the 2% of subjects missing balance and considered the computationally
simpler case of missingness only in depression. We letXbalance equal 1 if there was chronic imbal-
ance/dizziness and 0, otherwise;Xage indicates age categories 18 to 44, 45 to 64, and 65 or older;Xrace
indicates white, black, or other;Xgenderindicates men or women,Xhealth indicates self-described health
status, either poor to fair or good to excellent;Xwork indicates working or not working; andY equals 1 if
frequent medically treated depression and 0 otherwise. Also we letR equal 1 if missing depression and 0
otherwise. We specified the model of interest as

logit(pr(Y = 1)) =β0 + βB Xbalance+ βAXage+ βG Xgender

βRXrace+ βH Xhealth+ βW Xwork, (7)

where the parameter of interest isβB, the regression coefficient for the effect of balance problems on
frequent depression. For our sensitivity analysis, we started with three ignorable missing-data models: a
main effects model,

logit(pr(R = 0)) =η0 + ηB Xbalance+ ηAXage+ ηG Xgender

+ ηRXrace+ ηH Xhealth+ ηW Xwork, (8)

and hierarchical models with two- and three-way interactions. To construct nonignorable missing-data
models, we addedηDY, and subsequentlyηB∗ D XbalanceY to (8) and its extensions.

Missing in balance and depression

Because of computational limitations and sparse data, we needed to drop one covariate. We droppedXwork
because, of all the covariates, it had the weakest association with participation in Phase 2. We specified
the same model of interest as in (7) but withoutXwork. With standard hierarchical parametrizations
for the missing-data mechanisms, the only ignorable missing-data mechanism is missing completely at
random (Robins and Gill, 1997), which is too limited for our purposes. To create a rich class of ignorable
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missing-data models, we used a parametrization similar to Baker (1996), which is a type of randomized
monotone missingness process (Robins and Gill, 1997). For the probability that balance was not missing,
we specified the following ignorable missing-data model:

logit(pr(S = 0)) = θ0 + θG Xgender+ θAXage+ θRXrace+ θH Xhealth, (9)

and hierarchical models with two-way and three-way interactions. To construct nonignorable missing-
data models for missing in balance, we addedθB Xbalanceto (9) and its extensions. For the probability that
depression was not missing, we specified the following ignorable missing-data model:

logit(pr(R = 0) =(ψ ′
0 + ψ ′

G Xgender+ ψ ′
AXage+ ψ ′

RXrace+ ψ ′
H Xhealth)S

+ (ψ0 + ψB Xbalance+ ψG Xgender+ ψAXage+ ψRXrace+ ψH Xhealth)(1 − S),

(10)

and similar hierarchical models with two-way and three-way interactions, the latter restricted to
interactions with balance to minimize problems with sparse data. To construct nonignorable missing-data
models, we addedψDY, and subsequentlyψB DXbalanceY to (10) and its extensions.

Missing in depression with auxiliary variable

Because of computational limitations and sparse data, we needed to drop one covariate, which we
arbitrarily selected asXwork. We specified the same model as in (7) but withoutXwork. For simplicity
we also specified the following model relating the auxiliary variable to the other covariates:

logit(pr(A = 1)) = λ0 + λG Xgender+ λAXage+ λRXrace+ λH Xhealth. (11)

For the probability that depression was not missing, we specified the following ignorable missing-data
model:

logit(pr(R = 0)) = δ0 + δG Xgender+ δAXage+ δRXrace+ δH Xhealth+ δauxA, (12)

and hierarchical models with two- and three-way interactions, the latter restricted to interactions with
balance to minimize problems with sparse data. To construct nonignorable missing-data models, we added
δDY and subsequentlyδB DXbalanceY to (12) and its extensions.

4. ESTIMATION

In analysing these data a major consideration was the complex sample survey design. The 1994
and 1995 NHISs are cross-sectional household surveys with multistage stratified cluster area probability
samples. The first stage of sampling involved the selection of primary sampling units (PSUs), consisting
of counties or metropolitan areas. For purposes of variance estimation, the 1994 NHIS sample design was
approximated by the sampling of four pseudo-PSUs from 62 pseudo-strata. Pseudo-strata and pseudo-
PSUs are modifications of the original sampling strata and PSUs that preserve confidentiality, facilitate
variance computation, and can be treated as usual strata and PSUs for variance estimation (Korn and
Graubard, 1999). The 1995 NHIS sample design was approximated by the sampling of two pseudo-PSUs
from 187 pseudo-strata. Because NHIS was redesigned in 1995 with a new set of strata and sample of
PSUs, the 1994 and 1995 NHISs were treated as independent samples for estimating variances in our
analyses, which combined the two samples of data. The sample design for the combination of the two
surveys was approximated by 249(= 62+ 187) pseudo-strata with four or two pseudo-PSUs depending
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upon which survey year the strata came from. The sample weights, as assigned to each sampled individual
on the public use files, were used to estimate weighted cell counts in the analyses.

Estimation is based on a weighted likelihood in which observations were weighted according to the
sample weights. For a general discussion of weighted likelihoods see Skinneret al.(1989). We maximized
the weighted likelihood involving missing categorical data using the composite linear model approach
(Baker, 1994a) which specifies a matrix EM algorithm and then switches to a matrix Newton–Raphson
algorithm. See http://dcp.nci.nih.gov/bb. To avoid numerical problems, we added 0.05 to cells with zero
counts. Starting with the EM algorithm was important for obtaining good starting values for the Newton-
Raphson algorithm. It is not surprising that Bonettiet al. (1999) reported problems with only using a
Newton-Raphson algorithm to fit type I nonignorable missing-data models.

Although there have been various papers on fitting nonignorable missing-data models to survey data
(Stasny, 1987, 1988, 1990; Conaway, 1992, 1993; Chambers and Welsh, 1993; Forster and Smith, 1998;
Heitjan and Landis, 1994), they did not fully account for the complex survey design. In contrast, to
account for the stratification and cluster sampling, we computed variances using a first-order Taylor
series linearization (e.g. Korn and Graubard, 1999), which is a delta method that gives rise to a
sandwich estimator (see the Appendix). To facilitate computation we use matrices in the composite linear
framework. However, instead of a single vector of counts over all cross-classifications of variables, the
input is a vector of counts for each of the 622(= 62× 4+ 187× 2) PSUs. As a check of the linearization
variance formula, for some of the models we also computed standard errors using the jackknife method
for sample surveys (e.g. Korn and Graubard, 1999). The agreement was excellent. The advantage of the
linearization variance over the jackknife approach is that the computations were substantially faster.

5. RESULTS AND DISCUSSION

For a sensitivity analysis with missing categorical data, three common strategies are (i ) fit all
possible saturated nonignorable missing-data models (e.g. Bakeret al. (1992); Robins (1997), for type II
nonignorable missing-data mechanisms, Molenberghset al. (2001)), (i i ) plot the estimated parameter of
interest as a function of a key missing-data parameter (e.g. Vach and Blettner (1995)) and (i i i ) fit various
ignorable missing-data models, add one or two parameters to make the missing-data model nonignorable,
and compare goodness of fit and estimates (e.g. Baker and Laird 1988; Baker, 1994a,b, 1995a,b, 1996;
Fitzmauriceet al., 1996).

To our knowledge, strategy (i ) has only been applied in problems with few covariates; generalization
to many covariates is a topic for future research. Strategy (i i ) ismost useful when there is prior knowledge
of likely values for the effect of outcome on the probability of missing. Strategy(i i i ) has the important
advantage of using information on goodness of fit to sharpen inference. However, strategy(i i i ) is
generally only useful with large sample sizes and many covariates. As illustrated in Table 2, when
strategy(i i i ) is applied to small data sets with few covariates, the typical result (with Baker (1995b)
a notable exception) is either(a) little change in deviance between ignorable and nonignorable missing-
data models,(b) ahigh degree of overlap in confidence intervals for estimates of interest under ignorable
and nonignorable missing-data mechanisms, or(c) boundary solutions, that likely indicate a misspecified
model. Because we had very large sample sizes and many covariates, strategy(i i i ) wasespecially helpful
for our analysis.

Using strategy(i i i ) we found that adding one or two parameters to make the missing-data mechanism
for depression nonignorable dramatically decreased the deviance in a variety of models (Tables 3–5). For
example, in Table 3 with two-way interactions in missingness in depression, the change of deviance was
40 on one degree of freedom. Although the deviance only approximately follows a chi-square distribution

http://dcp.nci.nih.gov/bb
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Table 3.Analysis of health survey with missing only in depression

Effect of Effect of depression
balance on on the probability of

Missing-data mechanism** d.f. Deviance depression* missing depression*
main effects ignorable 271 2568 0.68 (0.04)

nonignorable D 270 2201 1.23 (0.05) 2.98 (0.27)
nonignorable D+BD 269 2164 1.04 (0.06)

two-way ignorable 245 517 0.68 (0.04)
nonignorable D 244 477 1.01 (0.07) 1.33 (0.22)
nonignorable D+BD 243 477 1.04 (0.17)

three-way ignorable 201 367 0.68 (0.04)
nonignorable D 200 333 1.00 (0.07) 1.28 (0.24)
nonignorable D+BD 199 328 1.41 (0.21)

*estimated coefficient in logistic regression with standard errors in parentheses.
**The model nonignorable D adds one parameter to the ignorable missing-data model to allow
missing in depression to depend on depression. The model nonignorable D+DB also adds a
parameter to allow missing in depression to depend on the interaction between balance and
depression.

due to the complex survey design, this large change in deviance indicates a substantial improvement in fit.
Importantly, a large sample size does not guarantee a large change in deviance. When analysing the same
data but with experiencing falls as the outcome (not shown), we found a difference in deviance of less than
1 between an ignorable and nonignorable model with two-way interactions. Hence, we believe that the
nonignorable missing-data models are very informative. Therefore, for those models, we report a range
of odds ratios for balance and depression. Under 29 of the 30 selected nonignorable missing-data models,
the odds ratios ranged from 2.7 with 95% CI of (2.3, 3.1) to 4.2 with 95% CI of (3.9, 4.6). Under one
nonignorable missing-data model, the odds ratio was 7.4 with 95% CI of(6.3, 8.6). Because a saturated
ignorable missing-data model will fit as well or better than a nonignorable missing-data mechanism,
it is also important to report the estimates under the ignorable missing-data mechanism, namely an
odds ratio of 2.0 with 95% CI of (1.8, 2.2). Despite the fact that the missing-data mechanisms varied
substantially among the models, the results from all the models indicated a strong association between
balance difficulties and frequent medically treated depression with lower bounds on the 95% confidence
intervals of at least 1.8.

In all the models for the nonignorable missing-data mechanism (except with the auxiliary variable
which complicates interpretation), the probability of being observed in depression increased as a function
of depression (e.g. a regression coefficient of 2.98 with standard error of only 0.27), as expected. This
agrees with our view that depressed subjects were most likely included in Phase 2.

Applying strategy(i i ) we plotted the odds ratio for balance and depression (with 95% confidence
interval) as function of the regression coefficient for the effect of depression on the probability of missing
depression (Figures 1 and 2), which corresponds to parameterηD, ψD, or δD, associated with (8), (10)
and (12) respectively . This is the type of plot proposed by Vach and Blettner (1995). Because goodness
of fit is a consideration, we also plotted the profile deviances as a function of the regression coefficient
for the effect of depression on the probability of missing depression. In the model involving missing in
both balance and depression with main effects (Figure, 2 bottom), there were two local minima in the
range of plausible values forψD. In all other models, we found only one local minimum in the range of
plausible values. The plots for the auxiliary variable model differed considerably from those of the other
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Table 4.Analysis of health survey with missingness in balance and depression

Effect of Effect of variable
balance on on missigness in

Missing-data mechanism** d.f. Deviance depression* variable
main ignorable: 222 1381 0.68 (0.04)

nonignorable in balance 221 1381 0.68 (0.04) 0.76 (0.85)
nonignorable in depression D 221 1321 1.08 (0.05) 1.51 (0.17)
nonignorable in depression D+DB 220 1053 2.00 (0.08)

two-way ignorable 177 330 0.68 (0.04)
nonignorable in balance 176 330 0.68 (0.04) 0.60 (1.63)
nonignorable in depression D 176 297 1.03 (0.06) 1.24 (0.19)
nonignorable in depression D+DB 175 295 1.36 (0.29)

three-way† ignorable 140 278 0.68 (0.04)
nonignorable in balance 139 278 0.68 (0.04) 0.76 (0.85)
nonignorable in depression D 139 245 1.03 (0.06) 1.26 (0.19)
nonignorable in depression D+DB 138 241 1.43 (0.23)

*estimated coefficient in logistic regression with standard errors in parentheses.
** the model nonignorable in balance adds one parameter to the ignorable model to allow missing in
balance depend on balance. The model nonignorable in depression D adds one parameter to the ignorable
missing-data model to allow missing in depression to depend on depression. The model nonignorable in
depression D+DB also adds a parameter to allow missing in depression depend on the interaction between
balance and depression.
†to avoid numerical problems with sparse data, the three-way interactions were included only when
balance was observed.

Table 5. Analysis of health survey with missing only in depression and auxiliary
variable

Effect of Effect of depression
balance on on the probability of

Missing-data mechanism** d.f. Deviance depression* missing depression*
main effects ignorable 334 3674 1.44 (0.04)

nonignorable D 333 3094 1.24 (0.05) −5.8 (0.09)
nonignorable D+BD 332 2373 1.09 (0.05)

two-way ignorable 315 2835 1.44 (0.04)
nonignorable D 314 2194 1.26 (0.05) −5.8 (0.09)
nonignorable D+BD 313 1697 1.23 (0.04)

three-way† ignorable 302 2803 1.44 (0.04)
nonignorable D 301 2166 1.26 (0.05) −5.8 (0.09)
nonignorable D+BD 300 1671 1.23 (0.04)

*estimated coefficient in logistic regression with standard errors in parentheses.
** the model nonignorable D adds one parameter to the ignorable missing-data model to
allow missing in depression to depend on depression. The model nonignorable D+DB also
adds a parameter to allow missing in depression depend on the interaction between balance
and depression.
†to avoid numerical problems with sparse data, the three-way interactions were included only
when balance was observed
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Missing only in depression

Missing in depression and balance

Fig. 1. Effect of Missing in Depression on Deviance and Odds Ratio. The odds ratio in the lower plot refers to balance
and medically treated depression, with the dashed lines indicating 95% confidence intervals. Nonignorability refers
to the logarithm of the odds ratio for depression and missingness in depression. A value of 0 indicates an ignorable
missing-data model. A value of 3 corresponds to an odds ratio of 20 and a value of−3 corresponds to an odds ratio
of 1/20. A value between 1 and 3 corresponds to the minimum deviance; values farther away give rise to extremely
large changes in deviances.

models because missingness also depended on the auxiliary variable. For the auxiliary variable models,
we experienced computational problems forλD less than the value at the minimum deviance. This was
likely due to the very sparse data and the fact theλD at the minimum deviance was so small. The large
odds ratios for acceptable values of the deviances confirm the strong association between balance and
depression over all models and reasonable ranges ofηD, ψD, andλD.

Our sensitivity analysis has important consequences for public health. This analysis was the first
investigation of the relationship between psychological outcome and chronic balance or dizziness
problems in the overall adult population of the United States. Previous studies of balance and depression in
more specialized populations found either no association or a weak association. In contrast, for all models
that we investigated we found a very large association between balance and medically treated depression.
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Fig. 2. Effect Missing in Depression on Deviance and Odds Ratio With Auxiliary Variable. The odds ratio in the
lower plot refers to balance and medically treated depression, with the dashed lines indicating 95% confidence
intervals. Nonignorability refers to the logarithm of the odds ratio depression and missingness in depression within
a model in which the missingness in depression also depends on the auxiliary variable. A value of 0 indicates an
ignorable missing-data model. A value near−6 corresponds to the minimum deviance; calculations with smaller
values exhibited computational problems.

APPENDIX: L INEARIZATION VARIANCE

Let s index stratum andc = 1, . . . , ns index PSU within stratums. Also let j index a cross-
classification of all the variables andyscj denote the sum of weights over all individuals in stratums, PSU
c, and cross-classificationj . Let Ysc = {ysc1, . . . , yscj}, DI Fsc = Ysc − �cYsc/ns andY = �s�cYsc.
Following the notation in Baker (1994a), letC = {ci j } = the matrix mapping the complete to incomplete
data. Given the design matrices and the functional forms, the software automatically computesU = a
vector of expected counts for the incomplete dataY, U∗ = {u∗

i } = vector of expected counts for the
complete data,S = {sja} = vector used in computing the score statistic, and ObsInf, the observed
information matrix. The linearization variance is ObsInf−1 Core ObsInf−1, where

Core=
∑

s

ns∑
c=1

ns

ns−1
K DI Fsc DI F ′

scK
′,

andK = diag(1/U )C diag(U∗)S. The derivation of Core follows that in Baker (1994a). Elementa of the
score vector is Scoresca = � j yscjk ja wherekja = (�i cj i u∗

i sia)/u j as in Baker (1994a). The mean score
for elementa is MeanScoresa = �c Scoresca/nc. The(a, b) element of Core is thus

Coreab =
∑

s

ns

ns−1

∑
c

(Scoresca− MeanScoresa)(Scorescb− MeanScoresb)

=
∑

s

ns∑
c=1

ns

ns−1

[ nsc∑
j =1

(yscj −
mc∑
c=1

yscj/nsc)kja

nsc∑
j =1

(yscj −
mc∑
c=1

yscj/nsc)kjb

]

=
∑

s

ns∑
c=1

ns

ns−1

[ nsc∑
j =1

DI Fscjk ja

][ nsc∑
j =1

DI Fscj k jb

]
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